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Abstract A radical-mediated approach to the core structure of fluori-
nated marinoquinoline A, N-methylated marinoquinoline A and related
congeners via the use of Togni’s reagent is described.
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Despite the diversity and bioactivity of tricyclic hetero-
cycles in the chemical literature, the 3H-pyrollo[2,3-c]quin-
oline ring system remains a rarely reported structural motif
amongst natural products.1 It was first described in 2007 as
the core of the natural product, marinoquinoline A (1a; Fig-
ure 1),2 isolated from the marine gliding bacterium Rapidi-
thrix thailandica and was shown to be a strong inhibitor of
acetylcholinesterase (IC50 = 4.9 μM).3 Five further deriva-
tives, marinoquinolines B–F (1b–f) were reported in 2011.4
These compounds all exhibited moderate cytotoxicity
against three cancer cell lines and promising activities
against the tropical parasite Plasmodium falciparumK1 (IC50
= 1.7–15 μM). Other examples of natural products contain-
ing the 3H-pyrollo[2,3-c]quinoline core include trigonoine
B (2) and aplidiopsamine A (3) as shown below.5

The development of novel methodology to introduce tri-
fluoromethyl groups (CF3) into organic compounds has at-
tracted significant attention, due to the fact that it can read-
ily alter the physical, chemical and biological properties of
a compound.6,7 Fluorinated compounds frequently exhibit
improved solubility and lipophilicity, resulting in improved
membrane permeability and increased bioavailability in
comparison to their non-fluorinated congeners.8

From a synthetic standpoint, there are several potential
approaches towards construction of the pyrroloquinoline
system and accordingly, reported examples include cyclisa-
tion of 3-quinolyl hydrazones,9 and palladium-catalysed
annulations of amine-halogenated quinolones.10 Of note, is
Correia’s description of the synthesis of four members of

the marinoquinoline family featuring a Heck–Matsuda ary-
lation and Pictet–Spengler cyclisation as key steps.11 More
recently Banwell reported the total synthesis of marino-
quinoline A via a palladium-catalysed Ullmann coupling of
nitroarenes with pyrroles.12

As a result of the potent biological activities of 3H-py-
rollo[2,3-c]quinoline ring systems and our ongoing research
into radical additions to isocyanides13 (Scheme 1), we now
wish to disclose the results of our synthesis of fluorinated
derivatives of marinoquinoline A and related structural de-
rivatives.

Aryl isocyanides are well-established radical acceptors
in cascade reactions,14 as evidenced by reports from Studer
who explored the addition of electrophilic CF3 radicals to
aryl isocyanides to form 6-trifluoromethyl phenanthridines
and 2-trifluoromethylated indoles using Togni’s reagent.15

We envisaged that under similar reaction conditions, a
6-endo cyclisation would occur from the protected pyrol-
loisocyanide 9 comprising trifluoromethylation and con-

Figure 1  Natural products containing the core 3H-pyrollo[2,3-c]quino-
line structure
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comitant quinoline formation. Subsequent deprotection of
the pyrrole ring would result in the 2-trifluoromethyl ana-
logue of marinoquinoline A (7; Scheme 2).

Scheme 2  Disconnection approach to fluorinated marinoquinoline A

Our synthetic approach commenced with the prepara-
tion of 3-bromopyrrole-l-carboxylic acid tert-butyl ester
(10) as described.16 Subsequent Suzuki–Miyaura coupling
with 2-iodoaniline (11) gave 12 in good yield.13 Formylation

with formic acetic anhydride,17 followed by dehydration
with phosphorus oxychloride in the presence of diisopro-
pylamine resulted in the required cyclisation precursor 14
in good yield (Scheme 3).18

Following the conditions reported by Studer,15a treat-
ment of isocyanide 14 with commercially available Togni’s
reagent 15 in the presence of tetramethylammonium iodide
(TMAI), as the iodide source/initiator, pleasingly gave the 6-
endo cyclisation product 16 in 37% yield and therefore the
core 3H-pyrollo[2,3-c]quinoline ring system. Unlike in our
previous report on the synthesis of spirocyclic and tricyclic
heterocycles, we were pleased that under the reaction con-
ditions used, there was no evidence of 5-exo cyclisation,
with only 6-endo cyclised product obtained. Subsequent
deprotection of the pyrrole protecting group with TFA re-
sulted in trifluoromethylated marinoquinoline A 7 in excel-
lent yield (Scheme 4).

As a result of the success in our synthesis of the core
structure of fluorinated marinoquinoline A 7, we elected to
carry out further investigations of cyclisations with analo-
gous pyrrole and five-membered heterocycle substituted
aryl isocyanides as shown (Figure 2).

Arylamines were synthesised using three approaches.
The first reported by Rault,19 utilised the Clauson–Kass re-
action of nitroanilines with 2,3-dimethoxytetrahydrofuran
in acetic acid. Subsequent reduction of 1-(2-nitrophenyl)-
pyrroles using BiCl3–NaBH4 resulted in 1-(2-aminophe-
nyl)pyrrole precursor derivatives 17a to 17d in yields of 18%
to 75% over two steps. Alternatively, use of Suzuki–Miyaura
conditions using aryl iodides and commercially available
boronic acids, gave the corresponding amine precursors
17e to 17j in good yields.16 The third approach involved
nucleophilic aromatic substitution of a heteroaryl ring with

Scheme 1  Synthesis of either tricyclic or spirocyclic heterocycles
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2-fluoronitrobenzene, followed by nitro group reduction
with SnCl2 to give precursor 17k in 25% yield over two
steps.20 Formylation with either formic acetic anhydride or
ethyl formate, followed by dehydration with phosphorus
oxychloride and diisopropylamine proceeded smoothly, re-
sulting in a range of isocyanides 17. With the corresponding

isocyanides 17 in hand, we carried out radical cyclisations
using Togni’s reagent and TMAI. The resulting 6-endo cycli-
sations gave a range of tricyclic structures bearing a trifluo-
romethyl group in the 2-position of the quinoline ring as
shown below (Scheme 5).

Scheme 5  Cyclisation using Togni’s reagent to give a range of tricyclic and tetracyclic derivatives

Figure 2  Aryl isocyanide precursors in this study
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The initial precursors (17a–d) were designed to explore
the electronic effects of the cyclisation precursor and from
the results obtained it was evident that neutral or electron-
deficient aryl isocyanides favoured cyclisation. No reaction
was observed when electron-rich aryl isocyanides were
subjected to the reaction. Following this initial screen, iso-
cyanides 17e and 17f were reacted and successfully under-
went 6-endo cyclisation to provide the core 3H-pyrollo[2,3-c]-
quinolone structures 18e and 18f. The oxygen and sulfur
derivatives 17g and 17h were also investigated, however no
reaction was observed and the starting material was recov-
ered. We attributed this to the fact that the lone pairs avail-
able to both the thiophene and the furan rings may impede
cyclisation of the intermediate radical. No reaction was ob-
served when the N-Boc derivative 17i was subjected to the
cyclisation conditions. The lack of reaction can be attribut-
ed to the favoured reactivity of pyrroles at the 2-position as
reported by Roberts in combination with the fact that the
intermediate trifluoromethyl-stabilised α-imidoyl radical is
electron-poor as opposed to our previous studies, where
the α-imidoyl radical was stabilised by a thiol.13,21 To extend
this study, we explored isocyanides 17j and 17k where
upon cyclisation tetracyclic structures would be formed.
Gratifyingly tetracycles 18j and 18k were obtained in good
yields. The extended conjugation in products 18j and 18k,
combined with the increased nucleophilicity of the ben-
zothiophene and indole rings, may account for the success-
ful cyclisation compared to their pyrrole and thiophene
counterparts.

The formation of the trifluoromethylated tricyclic prod-
ucts in preference to their spirocyclic congeners that we ob-

served from our previous studies, may be gleaned from the
mechanistic work by Studer.15a Reaction of Togni’s reagent
15 with TMAI, results in generation of the CF3 radical and
ortho-iodobenzoate 20 as a by-product. The CF3 radical
adds to isocyanide 14 to generate α-imidoyl radical 22,
which can cyclise in a 6-endo or 5-exo manner. However,
mechanistically following the work of Studer, the resulting
radical is deprotonated by ortho-iodobenzoate to form a
radical anion, which further reacts with Togni’s reagent via
single electron transfer (SET) to furnish the Boc-protected
marinoquinoline A 16 and the chain carrying CF3 radical
(Scheme 6). In contrast to our previous studies where the
intermediate radical could abstract hydrogen from thiophe-
nol, the intermediate radical 23 resulting from 5-exo addi-
tion is unable to be deprotonated by ortho-iodobenzoate
and as such the 5-exo product is not observed.

In summary, we have developed a novel approach to
2-trifluoromethyl pyrollo[2,3-c]quinoline ring systems
starting from readily prepared isocyanides.22 This radical
process using Togni’s reagent has been used in the synthesis
of trifluoromethylated marinoquinoline A 7. The biological
activities against cancer cell lines and antimalarial activity
are currently under investigation in our laboratories and
will be reported in due course.
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Scheme 6  Synthesis of fluorinated marinoquinoline A
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